

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ALGORITMOS Y MEDICIONES AMBIENTALES SPA Seminario 180/184/188Santiago, CHILE Viviana Zúñiga Mosqueira Phone: (56) 2 236 16600 <u>vzuniga@algoritmospa.com</u>

ENVIRONMENTAL

Valid To: March 31, 2025

Certificate Number: 4235.01

In recognition of the successful completion of the A2LA evaluation process, including an evaluation of the organization's compliance with The NELAC Institute's National Environmental Field Activities Program (NEFAP) Field Sampling and Measurement Organization Volume 1 Standard (TNI FSMO V1 2014 Rev 2.0), accreditation is granted to this organization to perform recognized methods using the following testing technologies and in the analyte categories identified below:

FSMO Type:

Commercial, Public and Private Water System, Public and Private Wastewater System, Industrial

Mobile Units: Trucks

Water Sampling:

Matrices	Technologies	Procedures(s)
Drinking Water, Drinking Fountains	Grab Sampling, Automatic Samplers, Flow Monitoring	NCh 409/2 2004 Drinking Water Part 2 – Sampling; NCh ISO 5667/1 2017 Water quality - Sampling Guidance on thedesign of sampling programmes and sampling techniques NCh 411/3 2014 Guide on the Preservation and Handling of Samples
Water for industrial purposes	Grab sampling	P-1001, Ed.00 Technical Procedure for Water Sampling
Superficial Water, Underground Water, Marine Waters	Grab Sampling, Automatic Samplers, Flow Monitoring	NCh ISO 5667/1 2017 Water quality - Sampling Guidance on thedesign of sampling programmes and sampling techniques NCh 411/3 2014 Guide on the Preservation and Handling of Samples; NCh 411/4 1997 Guide for the Sampling of Natural and Artificial Lakes; NCh 411/9 1997 Guide for the Sampling of Marine Waters; NCh 411/11 1998 Guide for the Sampling of Underground Water; NCh-ISO 5667/6 2015 Guide for the Sampling of Rivers and Water Courses

Matrices	Technologies	Procedures(s)
Wastewater	Grab Sampling, Automatic Samplers, Flow Monitoring,	NCh ISO 5667/1 2017 Water quality - Guidance on the designof sampling programmes and sampling techniques NCh 411/3 2014 Guide on the Preservation and Handling of Samples; NCh 411/10 2005 Guide for the Sampling of Wastewaters; NCh 3205 2011 Flowmeters of Wastewater Requirements;
	Monitoring,	

Solid Sampling:

Matrices	Technologies	Procedures(s)
Soil	Grab Sampling	P-1002 Ed.00 Technical Procedure for Soil Sampling based NCh
		programs and NCh 3400/2:2016 Soil Quality: Guidelines on sampling
		techniques
Sludge	Grab sampling	I-1021 Ed.00, Operational Instruction Sludge and Compost Sampling
Compost	Grab sampling	I-1021 Ed.00, Operational Instruction Sludge and Compost Sampling
Aquatic sediments,	Grab sampling	P-1007 Ed.00, Technical Procedure for Sediments Sampling and
Marine Sediments,		Measuring
Lake Sediments		
Solid Industrial waste,	Grab sampling	P-1009 Ed.00, Technical Procedure for Solid Waste, Solid Industrial
Solid waste,		Waste, and Dangerous Waste Sampling
Dangerous Waste		
Respirable Silica	Sampling and	P-9007 Ed.00, Procedure for Crystallized Silica in Breathable Fraction,
_	analysis	Unsorted Dust in Breathable Fraction and Total Unclassified Powder
	-	Sampling

Water Measurements: Drinking water, Drinking Fountains, Seawater, Superficial, Wastewater, and Underground Water

Parameter/Analyte ¹	Technology	Procedure(s)
Alkalinity – Superficial water, Underground water, Wastewater, and drinking water, Seawater	Photometry	I-1022 Ed.00, Operational Instruction Alkalinity measurement
Chlorophyll – Superficial water, Underground water	Optical	I-1023 Ed.00, Operational Instruction Use of depth probe
Dissolved Oxygen in Water Supply Sources, Wastewater, Superficial, Underground Water Seawater, drinking water, water for industrial purposes	Electrochemical	Standard Methods for Examination of Water andWastewater 23rd ed. 2017, 4500-O G
Dissolved Oxygen in Superficial Water, Underground Water Seawater, drinking water, water for industrial purposes, Water Supply Sources,	Optical	Standard Methods for Examination of Water andWastewater 23rd ed. 2017; 4500-O H

h

Parameter/Analyte ¹	Technology Procedure(s)	
Electrical Conductivity in Drinking Water, Water Supply Sources, Wastewater, Superficial, Underground Water, Seawater, water for industrial purposes	Electrode Cell Probe	Standard Methods for Examination of Water and Wastewater 23 rd ed. 2017; 2510 B
Floating matter and unnatural foams – Superficial water, Underground water, Wastewater, and drinking water, Seawater, Water for industrial purposes, Water supply sources Floating oils and fats in Superficial water, underground water, wastewater, drinking water, seawater, water for industrial purposes and	Visual method Grab Sampling	I-1017 Ed.00, Operational Instruction Sampling Fats andoils, determination of floating matter and unnatural foams
Drinking Fountains. Oxidation – Reduction Potential (ORP) – Superficial water, Underground Water, Wastewater,and drinking water	Electrode cell probe	Standard Methods for Examination of Water and Wastewater 23rd ed. 2017; 2580. B.
Oxidation – Reduction Potential (ORP) – Aquatic sediments, Marine sediments, Lake sediments	Electrode cell probe	P-1007 Ed.00, Technical Procedure for SedimentsSampling and Measuring
Oxidation–Reduction Potential- Seawater	Electrode cell probe	I-1006 Ed.00, Operational Instruction Seawater sampling
pH in Drinking Water, WaterSupply Sources, Wastewater,Superficial water, seawater, and Underground Water	Potentiometric	Standard Methods for Examination of Water and Wastewater 23rd ed. 2017 4500 H+B
pH in seawater	Electrometric	I-1006 Ed.00, Operational Instruction for Seawatersampling
pH Online in Wastewater, Superficial and Underground Water	Potentiometric	I-1004 Ed.00 Operational Instruction Residual Water Sampling
pH in Wastewater	Potentiometric	NCh2313/1 2021. pH Determination.
Residual Free Chlorine in Drinking Water, Drinking Fountains, Wastewater, Superficial, seawater, water forindustrial purposes and Underground Water	Colorimetric	Standard Methods for Examination of Water and Wastewater 23 rd ed. 2017, 4500 Cl G DPD
Total Chlorine in Drinking Water, Drinking Fountains, Wastewater, Superficial, seawater, water for industrial purposes and UndergroundWater	Colorimetric	Standard Methods for Examination of Water andWastewater 23rd ed. 2017, 4500 Cl G

hu

Parameter/Analyte ¹	Technology	Procedure(s)
Temperature in Superficial water, Underground water, Seawater, Wastewater, Drinking Fountains and drinking water, Water for industrial purposes	Thermistor	Standard Methods for Examination of Water andWastewater 23rd ed. 2017, 2550 B
Temperature Online in Wastewater, Superficial and Underground Water	Thermistor	I-1004 Ed.00 Operational Instruction Residual Water Sampling
Temperature – Wastewater	Thermistor	NCh2313/2. Of95. Temperature Determination
Salinity – Superficial water, Underground water, drinking water, Wastewater, Seawater	Electrode cell probe	I-1020 Ed.00, Operational Instruction Salinity Measuring
Settleable solids – Wastewater	Decanting	I-1019 Ed.00, Operational Instruction Settleable solids Measuring
Total dissolved solids- Superficial water, Underground water, Seawater, Wastewater, and drinking water, Water for industrial purposes, Water supply sources	Electrode cell probe	I-1018 Ed.00, Operational Instruction Total dissolvedsolids Measuring
Total Suspended Solids Superficial water, Underground water, Wastewater, Seawater, and drinking water, Water for industrial purposes, Water supply sources	Optical	I-1010 Ed.00, Measurement of Total Suspended Solids
Total Suspended Solids- Seawater	Electrochemistry	I-1006 Ed.00, Operational Instruction Seawater sampling
Transparency – Superficial water, Underground water, Wastewater, and drinking water,Seawater, Water for industrial purposes, Water supply. sources	Secchi disk method	I-1016 Ed.00, Operational Instruction Use of Secchi disk
Turbidity Superficial water, Underground water, Wastewater, and drinking water, Seawater, water for industrial purposes, Water supply sources	Nephelometric	I-1011 Ed.00, Measurement of Turbidity on Field
Water Flow Superficial water, Underground water, Seawater, drinking water, Water for industrial purposes, Water supply sources, wastewater	Velocity-Area method	ASTM D 3858 – 95(2014) Standard test method for Open- Channel flow measurement of Water by velocity-Area Method
Water Flow in Wastewater,	Volumetric,	According to Manufacturer's Manual Equipment HACH
Superficial, and Underground Water	Metered	AS959 and Manufacturer's Manual Equipment ISCO 6712 NCb 3205/2011 flow meters in westewater
Water Table level – Underground water, Water for industrial purposes	Longitudinal	ASIM D 4750 – 87(2001) Standard test Method for determining subsurface liquid levels in borehole or monitoring well
Water level – Superficial water	Longitudinal	ASTM D5413 – 93(2013) Standard Test Methods for Measurement of Water Levels in Open-Water Bodies

h

Parameter/Analyte ¹	Technology	Procedure(s)
Water level – Superficial water	Pressure	ASTM D5413 – 93(2013) Standard Test Methods for
		Measurement of Water Levels in Open-Water Bodies
Water Table Level	Longitudinal	I-1003 Ed.01 Operational Instruction GroundwaterSampling
Underground water, Water for	-	
industrial purposes		

Solids Measurements: Soils, sludges, sediments, composts

Parameter/Analyte [†]	Technology	Procedure(s)
Oxidation – Reduction Potential- Sludge, Compost, Soil	Electrode cell probe	I-1021 Ed.00, Operational Instruction Sludge andCompost Sampling
pH- Sludge, Compost, Soil	Potentiometric	I-1021 Ed.00, Operational Instruction Sludge andCompost Sampling
pH- Aquatic sediments, Marine sediments, Lake sediments	Potentiometric	P-1007 Ed.00, Technical Procedure for SedimentsSampling and Measuring
Temperature- Sludge, Compost, Soil	Thermistor	I-1021 Ed.00, Operational Instruction Sludge and Compost Sampling
Temperature – Aquatic sediments, Marine sediments,Lake sediments	Thermistor	P-1007 Ed.00, Technical Procedure for SedimentsSampling and Measuring

Air Emissions Sampling:

Matrices ¹	Parameter/Analyte	Methods
Particulate Matter	Particulate Material	CH-5 Method Rev.3, 2020 based
		on EPA 5.
Gases	Ammonia	EPA CTM 27, 1997
Gases	Determination of COV Emissions from	CH-18 Method Rev.1, 1998 based
	Stationary Sources (Gas Chromatography)	on EPA 18.
Particulate Matter	Determination of Particulate Matter in	EPA 17, 2017
	Stationary Sources (without heating)	
Gases	Formaldehyde Sampling and Analysis in	EPA 316, 2020
	Mineral, Wool, and Fiberglass industries	
Gases	Hydrogen Halide, Halogen Emissions: Total	CH-26A Method Rev.1, 2010
	Bromine, Hydrogen Bromide, TotalChlorine,	based on EPA26A.
	Hydrogen Chloride, Hydrogen Fluoride	
Gases – Particulate Matter	Metals:	CH-29 Method Rev.1, 2010 based
	Al, Sb, As, Ba, Be, Cd, Zn, Co, Cu, Cr, P,	on EPA29.
	Mn, Hg, Ni, Ag, Pb, Se, Tl, Te, V, Zr	
Particulate Matter	PM10 and PM2.5	EPA 201A, 2020
Particulate Matter	Condensable Particulate Matter	EPA 202, 2017
Gases – Particulate Matter	Polychlorinated Dibenzene-p-dioxins,	CH-23 Method Rev.1, 2010 based
	Polychlorinated Dibenzofurans	on EPA23.
Gases	Sulfuric Acid, Sulfur Dioxide, SulfurTrioxide Acid	EPA 8, 2019

hu

Matrices ¹	Parameter/Analyte	<u>Methods</u>
Gases	Total Reduced Sulfur Emissions (TRS)with	EPA 16A, 2017
	Impinger: Sulfur Dioxide, Carbon Disulfide,	
	Methyl Disulfide, Methyl Mercaptan,	
	Carbonyl Sulfide, DimethylSulfide,	
	Hydrogen Sulfide	
Gases – Particulate Matter	Total Sulfur	Method I-5039 Ed.00, Based on
		EPA 8 and EPA 16A
Gases	Total Reduced Sulfur Emissions (TRS):	EPA 16B, 2020
	Sulfur Dioxide, Methyl Disulfide,	
	Methylmercaptan, Dimethyl Sulfide,	
	Hydrogen Sulfide	

Air Sampling:

Matrices ¹	Parameter	Methods
Air Quality	Air Quality - Odor	NCh 3386:2015, Static Sampling by Olfactometry, Based on VDI 3880-2011-10

<u>Air Emissions Measurement:</u>

Matrices ¹	Parameter/Analyte	Methods
Gases	Carbon Monoxide	CH-10 Method Rev.1, 1998 based on
		EPA 10.
Gases	Determination of COV Concentration (Flame	CH-25A Method Rev.1, 1998 based on
	Ionization)	EPA 25A.
Gases – Particulate	Determination of Flow Velocity and Volumetric Flow	CH-2 Method Rev.1, 1996 based on
Matter	in Chimney Gases	EPA2.
Gases – Particulate	Determination of Gas Velocity and Volumetric Flow	CH-2C Method Rev.1, 1996 based on
Matter	Rate in Small Stacks or Ducts (Standard Pitot Tube)	EPA 2C.
Gases – Particulate	Determination of Humidity Content in Chimney	CH-4 Method Rev.1, 1996 based on
Matter	Gases	EPA 4.
Gases – Particulate	Direct Measurement of Gas Volume through Pipes	CH-2A Method Rev.1, 1996 based on
Matter	and Small Ducts	EPA2A.
Gases – Particulate	Gas Analysis for Determining Correction Factor of	CH-3B Method Rev.1, 1996 based on
Matter	Emission Velocity or Air Excess	EPA 3B.
Gases – Particulate	Gas Analysis for Dry Molecular Weight	CH-3 Method Rev.1, 1996 based on
Matter	Determination	EPA 3.
Gases – Particulate	Measurement of Gas Volume Flow Rates in Small	CH-2D Method Rev.1, 1996 based on
Matter	Pipes and Ducts	EPA 2D.
Gases	Nitrogen Oxides with Instrument Analyzer	CH-7E Method Rev.1, 1996 based on
		EPA 7E.
Gases – Particulate	Oxygen, Carbon Dioxide, Carbon Monoxide	CH-3A Method Rev.1, 1996 based on
Matter		EPA3A.
Gases – Particulate	Sample and Velocity Traverses (Sampling Point	CH-1 Method Rev.1, 1996 based on
Matter	Identification) for Stationary Sources	EPA1.

hu

Matrices ¹	Parameter/Analyte	Methods
Gases – Particulate	Sample and Velocity Traverses (Sampling Point	CH-1A Method Rev.1, 1996 based on
Matter	Identification) for Stationary Sources with Small	EPA1A.
	Stacks or Ducts	
Gases	Sulfur Dioxide, with Instrument Analyzer	CH-6C Method Rev.1, 1996 based on
		EPA 6C.

MECHANICAL

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this organization of perform recognized methods using the following test methods identified below:

<u>Test¹</u>	Method
Noise Measurement, Sound Pressure Level Corrected (NPC)	DS N°38/11 MMA
Noise Measurement, Equivalent Sound Pressure Level (LEQ)	P-9011 Ed.00 (Technical Procedure for Measuring Noise Generated by Sources not Regulated by DS 38/11 MMA)

¹ This Laboratory performs field testing activities for these test methods.

hu

Accredited Laboratory

A2LA has accredited

ALGORITMOS Y MEDICIONES AMBIENTALES SPA

Santiago, CHILE

for technical competence in the field of

Environmental Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of A2LA R219 – Specific Requirements – TNI Field Sampling and Measurement Organization Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 25th day of August 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 4235.01 Valid to March 31, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Environmental Scope of Accreditation.